Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Microbiol Mol Biol Rev ; 88(1): e0012722, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38126754

RESUMO

SUMMARYThe microbial community inhabiting the human colon, referred to as the gut microbiota, is mostly composed of bacterial species that, through extensive metabolic networking, degrade and ferment components of food and human secretions. The taxonomic composition of the microbiota has been extensively investigated in metagenomic studies that have also revealed details of molecular processes by which common components of the human diet are metabolized by specific members of the microbiota. Most studies of the gut microbiota aim to detect deviations in microbiota composition in patients relative to controls in the hope of showing that some diseases and conditions are due to or exacerbated by alterations to the gut microbiota. The aim of this review is to consider the gut microbiota in relation to the evolution of Homo sapiens which was heavily influenced by the consumption of a nutrient-dense non-arboreal diet, limited gut storage capacity, and acquisition of skills relating to mastering fire, cooking, and cultivation of cereal crops. The review delves into the past to gain an appreciation of what is important in the present. A holistic view of "healthy" microbiota function is proposed based on the evolutionary pathway shared by humans and gut microbes.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Grão Comestível , Bactérias/metabolismo , Culinária
3.
Gut Microbes ; 15(1): 2178801, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36799472

RESUMO

Obesity is a complex, multifactorial condition that is an important risk factor for noncommunicable diseases including cardiovascular disease and type 2 diabetes. While prevention and management require a healthy and energy balanced diet and adequate physical activity, the taxonomic composition and functional attributes of the colonic microbiota may have a supplementary role in the development of obesity. The taxonomic composition and metabolic capacity of the fecal microbiota of 286 women, resident in Auckland New Zealand, was determined by metagenomic analysis. Associations with BMI (obese, nonobese), body fat composition, and ethnicity (Pacific, n = 125; NZ European women [NZE], n = 161) were assessed using regression analyses. The fecal microbiotas were characterized by the presence of three distinctive enterotypes, with enterotype 1 represented in both Pacific and NZE women (39 and 61%, respectively), enterotype 2 mainly in Pacific women (84 and 16%) and enterotype 3 mainly in NZE women (13 and 87%). Enterotype 1 was characterized mainly by the relative abundances of butyrate producing species, Eubacterium rectale and Faecalibacterium prausnitzii, enterotype 2 by the relative abundances of lactic acid producing species, Bifidobacterium adolescentis, Bifidobacterium bifidum, and Lactobacillus ruminis, and enterotype 3 by the relative abundances of Subdoligranulum sp., Akkermansia muciniphila, Ruminococcus bromii, and Methanobrevibacter smithii. Enterotypes were also associated with BMI, visceral fat %, and blood cholesterol. Habitual food group intake was estimated using a 5 day nonconsecutive estimated food record and a 30 day, 220 item semi-quantitative Food Frequency Questionnaire. Higher intake of 'egg' and 'dairy' products was associated with enterotype 3, whereas 'non-starchy vegetables', 'nuts and seeds' and 'plant-based fats' were positively associated with enterotype 1. In contrast, these same food groups were inversely associated with enterotype 2. Fecal water content, as a proxy for stool consistency/colonic transit time, was associated with microbiota taxonomic composition and gene pools reflective of particular bacterial biochemical pathways. The fecal microbiotas of women of Pacific and New Zealand European ethnicities are characterized by distinctive enterotypes, most likely due to differential dietary intake and fecal consistency/colonic transit time. These parameters need to be considered in future analyses of human fecal microbiotas.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Microbiota , Humanos , Feminino , Etnicidade , Nova Zelândia , Fezes/microbiologia , Obesidade , Ingestão de Alimentos
4.
Nature ; 613(7945): 639-649, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36697862

RESUMO

Whether the human fetus and the prenatal intrauterine environment (amniotic fluid and placenta) are stably colonized by microbial communities in a healthy pregnancy remains a subject of debate. Here we evaluate recent studies that characterized microbial populations in human fetuses from the perspectives of reproductive biology, microbial ecology, bioinformatics, immunology, clinical microbiology and gnotobiology, and assess possible mechanisms by which the fetus might interact with microorganisms. Our analysis indicates that the detected microbial signals are likely the result of contamination during the clinical procedures to obtain fetal samples or during DNA extraction and DNA sequencing. Furthermore, the existence of live and replicating microbial populations in healthy fetal tissues is not compatible with fundamental concepts of immunology, clinical microbiology and the derivation of germ-free mammals. These conclusions are important to our understanding of human immune development and illustrate common pitfalls in the microbial analyses of many other low-biomass environments. The pursuit of a fetal microbiome serves as a cautionary example of the challenges of sequence-based microbiome studies when biomass is low or absent, and emphasizes the need for a trans-disciplinary approach that goes beyond contamination controls by also incorporating biological, ecological and mechanistic concepts.


Assuntos
Biomassa , Contaminação por DNA , Feto , Microbiota , Animais , Feminino , Humanos , Gravidez , Líquido Amniótico/imunologia , Líquido Amniótico/microbiologia , Mamíferos , Microbiota/genética , Placenta/imunologia , Placenta/microbiologia , Feto/imunologia , Feto/microbiologia , Reprodutibilidade dos Testes
5.
Appl Environ Microbiol ; 88(18): e0112822, 2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36036591

RESUMO

The large bowel of monogastric animals, such as that of humans, is home to a microbial community (microbiota) composed of a diversity of mostly bacterial species. Interrelationships between the microbiota as an entity and the host are complex and lifelong and are characteristic of a symbiosis. The relationships may be disrupted in association with disease, resulting in dysbiosis. Modifications to the microbiota to correct dysbiosis require knowledge of the fundamental mechanisms by which symbionts inhabit the gut. This review aims to summarize aspects of niche fitness of bacterial species that inhabit the monogastric gut, especially of humans, and to indicate the research path by which progress can be made in exploring bacterial attributes that underpin symbiont life in the gut.


Assuntos
Disbiose , Microbiota , Animais , Bactérias , Humanos , Simbiose
6.
Appl Environ Microbiol ; 87(22): e0144921, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34469198

RESUMO

The neonatal body provides a range of potential habitats, such as the gut, for microbes. These sites eventually harbor microbial communities (microbiotas). A "complete" (adult) gut microbiota is not acquired by the neonate immediately after birth. Rather, the exclusive, milk-based nutrition of the infant encourages the assemblage of a gut microbiota of low diversity, usually dominated by bifidobacterial species. The maternal fecal microbiota is an important source of bacterial species that colonize the gut of infants, at least in the short-term. However, development of the microbiota is influenced by the use of human milk (breast feeding), infant formula, preterm delivery of infants, caesarean delivery, antibiotic administration, family details and other environmental factors. Following the introduction of weaning (complementary) foods, the gut microbiota develops in complexity due to the availability of a diversity of plant glycans in fruits and vegetables. These glycans provide growth substrates for the bacterial families (such as members of the Ruminococcaceae and Lachnospiraceae) that, in due course, will dominate the gut microbiota of the adult. Although current data are often fragmentary and observational, it can be concluded that the nutrition that a child receives in early life is likely to impinge not only on the development of the microbiota at that time but also on the subsequent lifelong, functional relationships between the microbiota and the human host. The purpose of this review, therefore, is to discuss the importance of promoting the assemblage of functionally robust gut microbiotas at appropriate times in early life.


Assuntos
Bactérias , Dieta , Microbioma Gastrointestinal , Estado Nutricional , Bactérias/genética , Humanos , Recém-Nascido , Polissacarídeos
7.
Appl Environ Microbiol ; 87(6)2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33355114

RESUMO

The human colon contains a community of microbial species, mostly bacteria, which is often referred to as the gut microbiota. The community is considered essential to human well-being by conferring additional energy-harvesting capacity, niche exclusion of pathogens, and molecular signaling activities that are integrated into human physiological processes. Plant polysaccharides (glycans, dietary fiber) are an important source of carbon and energy that supports the maintenance and functioning of the gut microbiota. Therefore, the daily quantity and quality of plant glycans consumed by the human host have the potential to influence health. Members of the gut microbiota differ in ability to utilize different types of plant glycans. Dietary interventions with specific glycans could modulate the microbiota, counteracting ecological perturbations that disrupt the intricate relationships between microbiota and host (dysbiosis). This review considers prospects and research options for modulation of the gut microbiota by the formulation of diets that, when consumed habitually, would correct dysbiosis by building diverse consortia that boost functional resilience. Traditional "prebiotics" favor bifidobacteria and lactobacilli, whereas dietary mixtures of plant glycans that are varied in chemical complexity would promote high-diversity microbiotas. It is concluded that research should aim at improving knowledge of bacterial consortia that, through shared nourishment, degrade and ferment plant glycans. The consortia may vary in composition from person to person, but functional outputs will be consistent in a given context because of metabolic redundancy among bacteria. Thus, the individuality of gut microbiotas could be encompassed, functional resilience encouraged, and correction of dysbiosis achieved.


Assuntos
Microbioma Gastrointestinal , Polissacarídeos/administração & dosagem , Animais , Dieta , Fibras na Dieta/administração & dosagem , Disbiose/prevenção & controle , Humanos , Plantas
8.
Anaerobe ; 66: 102276, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32927049

RESUMO

B. ovatus is a member of the human gut microbiota with a broad capability to degrade complex glycans. Here we show that B. ovatus degrades plant polysaccharides in a preferential order, and that glycan structural complexity plays a role in determining the prioritisation of polysaccharide usage.


Assuntos
Bacteroides/crescimento & desenvolvimento , Bacteroides/metabolismo , Trato Gastrointestinal/microbiologia , Polissacarídeos/metabolismo , Microbioma Gastrointestinal , Humanos , Plantas/química , Polissacarídeos/química
9.
Appl Environ Microbiol ; 86(20)2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32801182

RESUMO

Whole-transcriptome analysis was used to investigate the molecular interplay between three bacterial species that are members of the human gut microbiota. Bacteroides ovatus, Subdoligranulum variabile, and Hungatella hathewayi formed associations in cocultures fed barley ß-glucan, a constituent of dietary fiber. B. ovatus depolymerized ß-glucan and released, but did not utilize, 3-O-ß-cellobiosyl-d-glucose (DP3) and 3-O-ß-cellotriosyl-d-glucose (DP4). These oligosaccharides provided growth substrates for S. variabile and H. hathewayi with a preference for DP4 in the case of the latter species. There was increased transcription of a B. ovatus mixed-linkage-ß-glucan utilization locus, as well as carbohydrate transporters in S. variabile and H. hathewayi when in batch coculture. Increased transcription of the ß-glucan utilization locus did not occur in continuous culture. Evidence for interactions relating to provision of cobalamin, alterations to signaling, and modulation of the "stringent response" (an adaptation to nutrient deprivation) were detected. Overall, we established a bacterial consortium based on barley ß-glucan in vitro, which can be used to investigate aspects of the functional blueprint of the human gut microbiota.IMPORTANCE The microbial community, mostly composed of bacterial species, residing in the human gut degrades and ferments polysaccharides derived from plants (dietary fiber) that would not otherwise be digested. In this way, the collective metabolic actions of community members extract additional energy from the human diet. While the variety of bacteria present in the microbial community is well known, the formation of bacterial consortia, and the consequent interactions that result in the digestion of dietary polysaccharides, has not been studied extensively. The importance of our work was the establishment, under laboratory conditions, of a consortium of gut bacteria that formed around a dietary constituent commonly present in cereals. This enabled the metabolic interplay between the bacterial species to be studied. This kind of knowledge is required to construct an interactive, metabolic blueprint of the microbial community that inhabits the human gut.


Assuntos
Bacteroides/metabolismo , Clostridiaceae/metabolismo , Clostridiales/metabolismo , Consórcios Microbianos , Transcriptoma , beta-Glucanas/metabolismo , Hordeum/química
10.
Artigo em Inglês | MEDLINE | ID: mdl-32612960

RESUMO

Preterm infants are exposed to major perinatal, post-natal, and early infancy events that could impact on the gut microbiome. These events include infection, steroid and antibiotic exposure, parenteral nutrition, necrotizing enterocolitis, and stress. Studies have shown that there are differences in the gut microbiome during the early months of life in preterm infants. We hypothesized that differences in the gut microbial composition and metabolites in children born very preterm persist into mid-childhood. Participants were healthy prepubertal children aged 5-11 years who were born very preterm (≤32 weeks of gestation; n = 51) or at term (37-41 weeks; n = 50). We recorded the gestational age, birth weight, mode of feeding, mode of birth, age, sex, and the current height and weight of our cohort. We performed a multi'omics [i.e., 16S rRNA amplicon and shotgun metagenomic sequencing, SPME-GCMS (solid-phase microextraction followed by gas chromatography-mass spectrometry)] analysis to investigate the structure and function of the fecal microbiome (as a proxy of the gut microbiota) in our cross-sectional cohort. Children born very preterm were younger (7.8 vs. 8.3 years; p = 0.034), shorter [height-standard deviation score (SDS) 0.31 vs. 0.92; p = 0.0006) and leaner [BMI (body mass index) SDS -0.20 vs. 0.29; p < 0.0001] than the term group. Children born very preterm had higher fecal calprotectin levels, decreased fecal phage richness, lower plasma arginine, lower fecal branched-chain amino acids and higher fecal volatile (i.e., 3-methyl-butanoic acid, butyrolactone, butanoic acid and pentanoic acid) profiles. The bacterial microbiomes did not differ between preterm and term groups. We speculate that the observed very preterm-specific changes were established in early infancy and may impact on the capacity of the very preterm children to respond to environmental changes.


Assuntos
Bacteriófagos , Microbioma Gastrointestinal , Criança , Estudos Transversais , Feminino , Humanos , Lactente , Recém-Nascido , Recém-Nascido Prematuro , Gravidez , RNA Ribossômico 16S/genética
11.
Gut Microbes ; 11(5): 1362-1373, 2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32453615

RESUMO

The human gut microbiota develops soon after birth and can acquire inter-individual variation upon exposure to intrinsic and environmental cues. However, inter-individual variation has not been comprehensively assessed in a multi-ethnic study. We studied a longitudinal birth cohort of 106 infants of three Asian ethnicities (Chinese, Malay, and Indian) that resided in the same geographical location (Singapore). Specific and temporal influences of ethnicity, mode of delivery, breastfeeding status, gestational age, birthweight, gender, and maternal education on the development of the gut microbiota in the first 2 years of life were studied. Mode of delivery, breastfeeding status, and ethnicity were identified as the main factors influencing the compositional development of the gut microbiota. Effects of delivery mode and breastfeeding status lasted until 6M and 3M, respectively, with the primary impact on the diversity and temporal colonization of the genera Bacteroides and Bifidobacterium. The effect of ethnicity was apparent at 3M post-birth, even before the introduction of weaning (complementary) foods, and remained significant after adjusting for delivery mode and breastfeeding status. Ethnic influences remained significant until 12M in the Indian and Chinese infants. The microbiota of Indian infants was characterized by higher abundances of Bifidobacterium and Lactobacillus, while Chinese infants had higher abundances of Bacteroides and Akkermansia. These findings provide a detailed insight into the specific and temporal influences of early life factors and ethnicity in the development of the human gut microbiota. Trial Registration: Clinicaltrials.gov registration no. NCT01174875.


Assuntos
Bactérias/crescimento & desenvolvimento , Aleitamento Materno , Parto Obstétrico , Etnicidade , Microbioma Gastrointestinal , Trato Gastrointestinal/microbiologia , Akkermansia/crescimento & desenvolvimento , Bactérias/classificação , Bacteroides/crescimento & desenvolvimento , Bifidobacterium/crescimento & desenvolvimento , Pré-Escolar , China , Fezes/microbiologia , Feminino , Humanos , Índia , Lactente , Recém-Nascido , Lactobacillus/crescimento & desenvolvimento , Malásia , Masculino , Desmame
12.
Appl Environ Microbiol ; 86(11)2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32220841

RESUMO

Bifidobacterial species are common inhabitants of the gut of human infants during the period when milk is a major component of the diet. Bifidobacterium breve, Bifidobacterium bifidum, Bifidobacterium longum subspecies longum, and B. longum subspecies infantis have been detected frequently in infant feces, but B. longum subsp. infantis may be disadvantaged numerically in the gut of infants in westernized countries. This may be due to the different durations of breast milk feeding in different countries. Supplementation of the infant diet or replacement of breast milk using formula feeds is common in Western countries. Formula milks often contain galacto- and/or fructo-oligosaccharides (GOS and FOS, respectively) as additives to augment the concentration of oligosaccharides in ruminant milks, but the ability of B. longum subsp. infantis to utilize these potential growth substrates when they are in competition with other bifidobacterial species is unknown. We compared the growth and oligosaccharide utilization of GOS and FOS by bifidobacterial species in pure culture and coculture. Short-chain GOS and FOS (degrees of polymerization [DP] 2 and 3) were favored growth substrates for strains of B. bifidum and B. longum subsp. longum, whereas both B. breve and B. longum subsp. infantis had the ability to utilize both short- and longer-chain GOS and FOS (DP 2 to 6). B. breve was nevertheless numerically dominant over B. longum subsp. infantis in cocultures. This was probably related to the slower use of GOS of DP 3 by B. longum subsp. infantis, indicating that the kinetics of substrate utilization is an important ecological factor in the assemblage of gut communities.IMPORTANCE The kinds of bacteria that form the collection of microbes (the microbiota) in the gut of human infants may influence health and well-being. Knowledge of how the composition of the infant diet influences the assemblage of the bacterial collection is therefore important because dietary interventions may offer opportunities to alter the microbiota with the aim of improving health. Bifidobacterium longum subspecies infantis is a well-known bacterial species, but under modern child-rearing conditions it may be disadvantaged in the gut. Modern formula milks often contain particular oligosaccharide additives that are generally considered to support bifidobacterial growth. However, studies of the ability of various bifidobacterial species to grow together in the presence of these oligosaccharides have not been conducted. These kinds of studies are essential for developing concepts of microbial ecology related to the influence of human nutrition on the development of the gut microbiota.


Assuntos
Bifidobacterium bifidum/metabolismo , Bifidobacterium breve/metabolismo , Bifidobacterium longum subspecies infantis/metabolismo , Bifidobacterium/metabolismo , Microbioma Gastrointestinal , Oligossacarídeos/metabolismo , Técnicas de Cocultura , Humanos , Lactente , Recém-Nascido
13.
Eur J Clin Nutr ; 74(9): 1362-1365, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31969698

RESUMO

The gut microbiota harvests energy from indigestible plant polysaccharides, forming short-chain fatty acids (SCFAs) that are absorbed from the bowel. SCFAs provide energy-presumably after easily digested food components have been absorbed from the small intestine. Infant night waking is believed by many parents to be due to hunger. Our objective was to determine whether faecal SCFAs are associated with longer uninterrupted sleep in infants. Infants (n = 57) provided faecal samples for determining SCFAs (7 months of age), and questionnaire data for determining infant sleep (7 and 8 months). Linear regression determined associations between SCFAs-faecal acetate, propionate and butyrate-and sleep. For each 1% higher propionate at 7 months of age, the longest night sleep was 6 (95% CI: 1, 10) minutes longer at both 7 and 8 months. A higher proportion of total faecal SCFA as propionate was associated with longer uninterrupted infant sleep.


Assuntos
Microbioma Gastrointestinal , Propionatos , Ácidos Graxos Voláteis , Fezes , Humanos , Lactente , Sono
14.
Am J Clin Nutr ; 111(1): 70-78, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31711093

RESUMO

BACKGROUND: Gut microbiota data obtained by DNA sequencing are complex and compositional because of large numbers of detectable taxa, and because microbiota characteristics are described in relative terms. Nutrition researchers use principal component analysis (PCA) to derive dietary patterns from food data. Although compositional PCA methods are not commonly used to describe patterns from complex microbiota data, this approach would be useful for identifying gut microbiota patterns associated with diet and body composition. OBJECTIVES: To use compositional PCA to describe the principal components (PCs) of gut microbiota in 5-y-old children and explore associations between microbiota components, diet, and BMI z-score. METHODS: A fecal sample was provided by 319 children aged 5 y. Their primary caregiver completed a validated 123-item quantitative FFQ. Body composition was determined using DXA, and a BMI z-score was calculated. Compositional PCA identified characterizing taxa and weightings for calculation of gut microbiota PC scores at the genus level, and was examined in relation to diet and body size. RESULTS: Three gut microbiota PCs were found. PC1 (negative loadings on uncultured Christensenellaceae and Ruminococcaceae) was related to lower BMI z-scores and longer duration of breastfeeding (per month) (ß = -0.14; 95% CI: -0.26, -0.02; and ß = 0.02; 95% CI: 0.003, 0.34, respectively). PC2 (positive loadings on Fusicatenibacter and Bifidobacterium; negative loadings on Bacteroides) was associated with a lower intake of nuts, seeds, and legumes (ß = -0.05 per gram; 95% CI: -0.09, -0.01). When adjusted for fiber intake, PC2 was also associated with higher BMI z-scores (ß = 0.12; 95% CI: 0.01, 0.24). PC3 (positive loadings on Faecalibacterium, Eubacterium, and Roseburia) was associated with higher intakes of fiber (ß = 0.02 per gram; 95% CI: 0.003, 0.04) and total nonstarch polysaccharides (ß = 0.02 per gram; 95% CI: 0.003, 0.04). CONCLUSIONS: Our results suggest that specific gut microbiota components determined using compositional PCA are associated with diet and BMI z-score.This trial was registered at clinicaltrials.gov as NCT00892983.


Assuntos
Bactérias/isolamento & purificação , Composição Corporal , Dieta , Microbioma Gastrointestinal , Bactérias/classificação , Bactérias/genética , Peso Corporal , Pré-Escolar , Estudos Transversais , Fibras na Dieta/metabolismo , Fezes/microbiologia , Feminino , Humanos , Masculino , Nozes/metabolismo , Análise de Componente Principal , Verduras/metabolismo
15.
Appl Environ Microbiol ; 86(2)2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31676481

RESUMO

Dietary fiber provides growth substrates for bacterial species that belong to the colonic microbiota of humans. The microbiota degrades and ferments substrates, producing characteristic short-chain fatty acid profiles. Dietary fiber contains plant cell wall-associated polysaccharides (hemicelluloses and pectins) that are chemically diverse in composition and structure. Thus, depending on plant sources, dietary fiber daily presents the microbiota with mixtures of plant polysaccharides of various types and complexity. We studied the extent and preferential order in which mixtures of plant polysaccharides (arabinoxylan, xyloglucan, ß-glucan, and pectin) were utilized by a coculture of five bacterial species (Bacteroides ovatus, Bifidobacterium longum subspecies longum, Megasphaera elsdenii, Ruminococcus gnavus, and Veillonella parvula). These species are members of the human gut microbiota and have the biochemical capacity, collectively, to degrade and ferment the polysaccharides and produce short-chain fatty acids (SCFAs). B. ovatus utilized glycans in the order ß-glucan, pectin, xyloglucan, and arabinoxylan, whereas B. longum subsp. longum utilization was in the order arabinoxylan, arabinan, pectin, and ß-glucan. Propionate, as a proportion of total SCFAs, was augmented when polysaccharide mixtures contained galactan, resulting in greater succinate production by B. ovatus and conversion of succinate to propionate by V. parvula Overall, we derived a synthetic ecological community that carries out SCFA production by the common pathways used by bacterial species for this purpose. Systems like this might be used to predict changes to the emergent properties of the gut ecosystem when diet is altered, with the aim of beneficially affecting human physiology.IMPORTANCE This study addresses the question as to how bacterial species, characteristic of the human gut microbiota, collectively utilize mixtures of plant polysaccharides such as are found in dietary fiber. Five bacterial species with the capacity to degrade polymers and/or produce acidic fermentation products detectable in human feces were used in the experiments. The bacteria showed preferential use of certain polysaccharides over others for growth, and this influenced their fermentation output qualitatively. These kinds of studies are essential in developing concepts of how the gut microbial community shares habitat resources, directly and indirectly, when presented with mixtures of polysaccharides that are found in human diets. The concepts are required in planning dietary interventions that might correct imbalances in the functioning of the human microbiota so as to support measures to reduce metabolic conditions such as obesity.


Assuntos
Bactérias/metabolismo , Microbioma Gastrointestinal , Técnicas de Cocultura/métodos , Glucanos/metabolismo , Pectinas/metabolismo , Xilanos/metabolismo , beta-Glucanas/metabolismo
16.
Anaerobe ; 61: 102112, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31629806

RESUMO

Immuno-modulatory effects of infant gut bacteria were tested on poly(I:C) stimulated HT-29 intestinal epithelial cells. Blautia producta, Bacteroides vulgatus, Bacteroides fragilis and Bacteroides thetaiotaomicron decreased transcription of poly(I:C)-induced inflammatory genes. Modulation of basal level and poly(I:C)-induced IL-8 secretion varied between bacterial species, and between heat treated and non-heat treated bacterial cells.


Assuntos
Bactérias , Microbioma Gastrointestinal , Regulação da Expressão Gênica , Transcrição Gênica , Células HT29 , Humanos , Lactente , Inflamação/genética , Inflamação/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia
17.
JMIR Res Protoc ; 8(8): e14529, 2019 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-31452525

RESUMO

BACKGROUND: The prevalence of obesity has increased substantially over recent decades and is associated with considerable health inequalities. Although the causes of obesity are complex, key drivers include overconsumption of highly palatable, energy-dense, and nutrient-poor foods, which have a profound impact on the composition and function of the gut microbiome. Alterations to the microbiome may play a critical role in obesity by affecting energy extraction from food and subsequent energy metabolism and fat storage. OBJECTIVE: We report the study protocol and recruitment strategy of the PRedictors linking Obesity and the gut MIcrobiomE (PROMISE) study, which characterizes the gut microbiome in 2 populations with different metabolic disease risk (Pacific and European women) and different body fat profiles (normal and obese). It investigates (1) the role of gut microbiome composition and functionality in obesity and (2) the interactions between dietary intake; eating behavior; sweet, fat, and bitter taste perception; and sleep and physical activity; and their impact on the gut microbiome, metabolic and endocrine regulation, and body fat profiles. METHODS: Healthy Pacific and New Zealand (NZ) European women aged between 18 and 45 years from the Auckland region were recruited for this cross-sectional study. Participants were recruited such that half in each group had either a normal weight (body mass index [BMI] 18.5-24.9 kg/m2) or were obese (BMI ≥30.0 kg/m2). In addition to anthropometric measurements and assessment of the body fat content using dual-energy x-ray absorptiometry, participants completed sweet, fat, and bitter taste perception tests; food records; and sleep diaries; and they wore accelerometers to assess physical activity and sleep. Fasting blood samples were analyzed for metabolic and endocrine biomarkers and DNA extracted from fecal samples was analyzed by shotgun sequencing. Participants completed questionnaires on dietary intake, eating behavior, sleep, and physical activity. Data were analyzed using descriptive and multivariate regression methods to assess the associations between dietary intake, taste perception, sleep, physical activity, gut microbiome complexity and functionality, and host metabolic and body fat profiles. RESULTS: Of the initial 351 women enrolled, 142 Pacific women and 162 NZ European women completed the study protocol. A partnership with a Pacific primary health and social services provider facilitated the recruitment of Pacific women, involving direct contact methods and networking within the Pacific communities. NZ European women were primarily recruited through Web-based methods and special interest Facebook pages. CONCLUSIONS: This cross-sectional study will provide a wealth of data enabling the identification of distinct roles for diet, taste perception, sleep, and physical activity in women with different body fat profiles in modifying the gut microbiome and its impact on obesity and metabolic health. It will advance our understanding of the etiology of obesity and guide future intervention studies involving specific dietary approaches and microbiota-based therapies. TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry ACTRN12618000432213; https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=370874. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): RR1-10.2196/14529.

18.
Appl Environ Microbiol ; 85(19)2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31375480

RESUMO

The biological succession that occurs during the first year of life in the gut of infants in Western countries is broadly predictable in terms of the increasing complexity of the composition of microbiotas. Less information is available about microbiotas in Asian countries, where environmental, nutritional, and cultural influences may differentially affect the composition and development of the microbial community. We compared the fecal microbiotas of Indonesian (n = 204) and New Zealand (NZ) (n = 74) infants 6 to 7 months and 12 months of age. Comparisons were made by analysis of 16S rRNA gene sequences and derivation of community diversity metrics, relative abundances of bacterial families, enterotypes, and cooccurrence correlation networks. Abundances of Bifidobacterium longum subsp. infantis and B. longum subsp. longum were determined by quantitative PCR. All observations supported the view that the Indonesian and NZ infant microbiotas developed in complexity over time, but the changes were much greater for NZ infants. B. longum subsp. infantis dominated the microbiotas of Indonesian children, whereas B. longum subsp. longum was dominant in NZ children. Network analysis showed that the niche model (in which trophic adaptation results in preferential colonization) of the assemblage of microbiotas was supported in Indonesian infants, whereas the neutral (stochastic) model was supported by the development of the microbiotas of NZ infants. The results of the study show that the development of the fecal microbiota is not the same for infants in all countries, and they point to the necessity of obtaining a better understanding of the factors that control the colonization of the gut in early life.IMPORTANCE This study addresses the microbiology of a natural ecosystem (the infant bowel) for children in a rural setting in Indonesia and in an urban environment in New Zealand. Analysis of DNA sequences generated from the microbial community (microbiota) in the feces of the infants during the first year of life showed marked differences in the composition and complexity of the bacterial collections. The differences were most likely due to differences in the prevalence and duration of breastfeeding of infants in the two countries. These kinds of studies are essential for developing concepts of microbial ecology related to the influence of nutrition and environment on the development of the gut microbiota and for determining the long-term effects of microbiological events in early life on human health and well-being.


Assuntos
Bifidobacterium/classificação , Fezes/microbiologia , Microbioma Gastrointestinal , Fatores Etários , Aleitamento Materno , Estudos de Coortes , DNA Bacteriano/genética , Humanos , Indonésia , Lactente , Leite Humano/microbiologia , Nova Zelândia , RNA Ribossômico 16S/genética , Ensaios Clínicos Controlados Aleatórios como Assunto , População Rural , População Urbana
19.
J Agric Food Chem ; 67(27): 7755-7764, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31251611

RESUMO

Pectic polysaccharides from New Zealand (NZ) spinach (Tetragonia tetragonioides) and karaka berries (Corynocarpus laevigatus) were extracted and analyzed. NZ spinach polysaccharides comprised mostly homogalacturonan (64.4%) and rhamnogalacturonan I (5.8%), with side chains of arabinan (8.1%), galactan (2.2%), and type II arabinogalactan (7.1%); karaka berry polysaccharides comprised homogalacturonan (21.8%) and rhamnogalacturonan I (10.0%), with greater proportions of side chains (arabinan, 15.6%; galactan, 23.8%; and type II arabinogalactan, 19.3%). Screening of gut commensal Bacteroides showed that six were able to grow on the NZ spinach extract, while five were able to grow on the karaka berry extract. Analysis of the polysaccharides remaining after fermentation, by size-exclusion chromatography and constituent sugar analysis, showed that the Bacteroides species that grew on these two substrates showed preferences for the different pectic polysaccharide types. Our data suggest that, to completely degrade and utilize the complex pectin structures found in plants, members of Bacteroides and other bowel bacteria work as metabolic consortia.


Assuntos
Aizoaceae/química , Bacteroides/crescimento & desenvolvimento , Magnoliopsida/química , Pectinas/metabolismo , Polissacarídeos/metabolismo , Bacteroides/metabolismo , Fermentação , Frutas/química , Microbioma Gastrointestinal/fisiologia , Nova Zelândia , Pectinas/análise , Pectinas/química , Folhas de Planta/química , Polissacarídeos/química , Polissacarídeos/isolamento & purificação
20.
ISME J ; 13(6): 1437-1456, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30728469

RESUMO

Pectin is abundant in modern day diets, as it comprises the middle lamellae and one-third of the dry carbohydrate weight of fruit and vegetable cell walls. Currently there is no specialized model organism for studying pectin fermentation in the human colon, as our collective understanding is informed by versatile glycan-degrading bacteria rather than by specialist pectin degraders. Here we show that the genome of Monoglobus pectinilyticus possesses a highly specialized glycobiome for pectin degradation, unique amongst Firmicutes known to be in the human gut. Its genome encodes a simple set of metabolic pathways relevant to pectin sugar utilization, and its predicted glycobiome comprises an unusual distribution of carbohydrate-active enzymes (CAZymes) with numerous extracellular methyl/acetyl esterases and pectate lyases. We predict the M. pectinilyticus degradative process is facilitated by cell-surface S-layer homology (SLH) domain-containing proteins, which proteomics analysis shows are differentially expressed in response to pectin. Some of these abundant cell surface proteins of M. pectinilyticus share unique modular organizations rarely observed in human gut bacteria, featuring pectin-specific CAZyme domains and the cell wall-anchoring SLH motifs. We observed M. pectinilyticus degrades various pectins, RG-I, and galactan to produce polysaccharide degradation products (PDPs) which are presumably shared with other inhabitants of the human gut microbiome (HGM). This strain occupies a new ecological niche for a primary degrader specialized in foraging a habitually consumed plant glycan, thereby enriching our understanding of the diverse community profile of the HGM.


Assuntos
Colo/microbiologia , Firmicutes/isolamento & purificação , Firmicutes/metabolismo , Pectinas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Firmicutes/classificação , Firmicutes/genética , Microbioma Gastrointestinal , Humanos , Polissacarídeo-Liases/genética , Polissacarídeo-Liases/metabolismo , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...